General Aspects/Case Studies on Sources and Bioremediation Mechanisms of Metal(loid)s 161

Cabello-Conejo, M. I., C. Becerra-Castro, A. Prieto-Fernández, C. Monterroso, A. Saavedra-Ferro, M. Mench and

P. S. Kidd. 2014. Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator

Alyssum pintodasilvae. Plant and Soil. 379: 35–50.

Chakravarty, P., N. S. Sarma and H. P. Sarma. 2010. Biosorption of cadmium(II) from aqueous solution using

heartwood powder of Areca catechu. Chem. Eng. Sci. 162: 949–9.

Chandra, R., V. Kumar and S. Tripathi. 2017. Phytoremediation of industrial pollutants and life cycle assessment.

pp. 14–35. In: R. Chandra and DNK, KV [eds.]. Phytoremediation of Environmental Pollutants.: CRC Press

(Taylor & Francis Group), USA.

Chaney, R. L. and J. A. Ryan. 1994. Risk based standards for arsenic, lead and cadmium in urban soils. In Summary

of information and methods developed to estimate standards for Cd, Pb and As in urban soils. Germany.

Che, D., R. B. Meagher, A. C. P. Heaton, A. Lima, C. L. Rugh and S. A. Merkle. 2003. Expression of mercuric ion

reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant

Biotechnol. J. 1: 311–319.

Chen, L., S. Luo, X. Li, Y. Wan, J. Chen and C. Liu. 2014. Interaction of Cd-hyperaccumulator Solanum nigrum L.

and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem. 68: 300–308.

Choppala, G., N. Bolan, A. Kunhikrishnan, W. Skinner and B. Seshadri. 2015. Concomitant reduction and

immobilization of chromium in relation to its bioavailability in soils. Environ. Sci. Pollut. Res. 22: 8969–8978.

Clemens, S., M. G. Palmgren and U. Krämer. 2002. A long way ahead: understanding and engineering plant metal

accumulation. Trends Plant Sci. 7: 309–315.

Cobbett, C. and P. Goldsbrough. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and

homeostasis. Annu. Rev. Plant Biol. 53: 159–182.

Conesa, H. M., M. W. Evangelou, B. H. Robinson, S. R. Conesa, H. M. Evangelou, M. W. Robinson, B. H. and

R. Schulin. 2012. Critical view of current state of phytotechnologies to remediate soils: still a promising tool?

Sci. World J. 1–10.

Cunningham, S. and D. Ow. 1997. Promises and prospects of root zone of crops. Phytoremediation. Plant Physiol.

110: 715–719.

Cunningham, S. and W. Berti. 2000. Phytoremediation of toxic metals: using plants to clean up the environment.

Phytostabilization of Metals. pp. 71–88.

Das, S., J. S. Jean, S. Kar, M. L. Chou and C. Y. Chen. 2014. Screening of plant growth-promoting traits in arsenic-

resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J.

Hazard. Mater. 272: 112–120.

Day, J. P., J. E. Fergusson and T. M. Chee. 1979. Solubility and potential toxicity of lead in urban street dust. Bull.

Environ. Contam. Toxicol. 23: 497–502.

Dhankher, O. P., E. A. Pilon-Smits, R. B. Meagher and S. Doty. 2012. Biotechnological approaches for

phytoremediation. Plant Biotechnology and Agriculture, 309–328.

Dixit, R., M. D. Wasiullah, K. Pandiyan, U. Singh and A. Sahu. 2015. Bioremediation of heavy metals from soil

and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainabiliity.

7: 2189–2212.

Doty, S. L., T. Q. Shang, A. M. Wilson, J. Tangen, A. D. Westergreen, L. A. Newman, S. E. Strand and M. P. Gordon.

2000. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian

cytochrome P450 2E1. PNAS. 6287–6291.

Douay, F., C. Pruvot, H. Roussel, H. Ciesielski, H. Fourrier and N. Proix. 2008. Contamination of urban soils in an

area of northern france polluted by dust emissions of two smelters. Water Air Soil Pollut. 188: 247–260.

Driscoll, C. T., Mason, H. M. Chan, D. Jacob and N. Pirrone. 2013. Mercury as a global pollutant: 543 sources,

pathways, and effects. Environ. Sci. Technol. 47: 4967–4983.

Dubey, S. K., P. Vyas, P. Tiwari, A. J. Viswas and S. P. Bajpai. 2019. Bioremediation of industrial effluent using

cyanobacterial species: Phormidium mucicola and Anabaena aequalis. Annu. Res. Rev. Biol., 1–8.

Dudka, S. and D. C. Adriano. 1997. Environmental impacts of metal ore mining and processing: a review. J. Environ.

Qual. 26: 590–602.

Duggan, M. J., M. J. Inskip, S. A., Rundle and J. S. Moorcroft. 1985. Lead in playground dust and on the hands of

schoolchildren. Sci. Total Environ. 44: 65–79.

Durve, A., S. Naphade, M. Bhot, J. Varghese and N. Chandra. 2012. Characterisation of metal and xenobiotic

resistance in bacteria isolated from textile effluent. Adv. Appl. Sci. Res. 3: 2801–2806.

Ernst, W. H. O. 1996. Bioavailability of heavy metals and decontamination of soils by plants. J. Appl. Geochem.

11: 163–167.

Frankenberger, W. T. and M. E. Losi. 1995. Applications of bioremediation in the cleanup of heavy metals and

metalloids. In bioremediation: science and applications. SSSA Special Publications, 173–210.

Gadd, G. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Micro Soc. 156: 609–643.